6.3.1. Общие положения
В I триместре беременности все органы плода и экстраэмбриональные структуры полностью сформированы. Со II триместра беременности
начинается период интенсивного роста плода и плаценты, которые зависят от МПК и содержания в крови матери необходимых питательных веществ. Поэтому питание матери имеет важное значение в предупреждении задержки внутриутробного развития плода.
Главным событием этого периода беременности является формирование коры большого мозга — высшей структуры ЦНС плода, которая позволяет выжить при сверхраннем рождении (22— 27 нед гестации).
Основными этапами II триместра беременности являются:
• интенсивный рост плода, опережающий рост плаценты;
• морфофункциональное становление систем плода:
— нейроэндокринной,
— иммунной,
— высших структур головного мозга (новая кора — неокортекс).
С 22 нед развития высшие структуры головного мозга берут на себя функцию интеграции и управления системами регуляции, что позволяет плоду в случаях преждевременных родов сохранять жизнеспособность вне организма матери. До этого срока жизнь плода вне организма матери невозможна.
С 18 нед гестационного срока у плода появляются выраженные защитно-приспособительные реакции в ответ на снижение кровотока, увеличение содержания в крови стрессовых гормонов матери. При снижении содержания глюкозы в крови частота генерализованных движений возрастает, усиливаются движения конечностей, которые улавливаются (ощущаются) матерью как повышенное (или ослабленное) шевеление плода. Рефлекторно от воздействия на барорецепторы стенки матки и плодовой части плаценты МПК возрастает.
Во II триместре беременности полностью сформировано виллезное дерево плаценты. Основным структурным компонентом плаценты являются ворсины хориона. По мере роста и удлинения ворсины дифференцируются в стволовые, мезенхимальные и незрелые промежуточные.
Фетальная часть плаценты становится своеобразным рецепторным полем плода, которое реагирует на нарушение его состояния и обеспечения.
Ворсинчатый хорион обладает необходимой пластинчатостью и в большинстве случаев обеспечивает комплекс адаптационных реакций, благодаря которым быстро восстанавливаются необходимые условия для дальнейшего роста плода.
При этом ряд лекарственных средств (антикоагулянты, антиагреганты, мембранстабилизаторы) активизируют защитно-приспособительные реакции в системе мать — плацента — плод. Прежде всего это возрастание маточно-плацентарно-плодового кровотока.
Заканчивается образование наружных половых органов в соответствии с генотипом плода.
Завершается формирование твердого неба и верхней губы. Воздействие повреждающих факторов в период с 18-й по 22-ю неделю гестации может вызывать расщелины неба и несрастание верхней губы у плода.
В начале II триместра (14—16 нед) возникает вторая волна инвазии цитотрофобласта, пик которой приходится на 18 нед, что обеспечивает низкорезистентный кровоток и усиление кровоснабжения плода для его интенсивного роста и развития.
В фетальной части плаценты повышается продукция простагландинов класса Е и простациклина, которые улучшают реологические свойства крови, так как обладают антиагрегантной и сосудорасширяющей активностью.
Быстрое увеличение размеров матки и возрастающее давление на переднюю брюшную стенку обеспечивается денервацией матки и передней брюшной стенки.
6.3.2. Рост плода и плаценты
В 16 нед гестации длина плода достигает 12 см, масса тела 100 г. В этом сроке при УЗИ можно четко визуализировать почти все органы, поэтому 16 нед беременности считается оптимальным временем для ультразвукового скрининга для исключения возможной патологии плода.
Прерывание беременности до 22 нед относится к позднему выкидышу, с 22 до 37 нед — к преждевременным родам. В 37—41 нед плод считается зрелым и доношенным, роды — своевременными.
Рост плода определяется МПК, функциональной активностью плаценты, селективной проницаемостью плацентарного барьера.
Первоначально остановимся на основных особенностях роста плода в среднем периоде гестационного возраста.
6.3.2.1. Сердечно-сосудистая система
Кровоснабжение плода отличается от кровоснабжения новрожденного во внеутробной жизни:
• оксигенация крови происходит в плаценте;
• правый и левый желудочки сокращаются скорее одновременно, чем последовательно; при этом сердце, голова и верхняя часть туловища получают кровь из левого желудочка, а плацента и нижняя половина туловища — из обоих желудочков.
При исследовании внутрисердечной гемодинамики плода установлено, что у плода до 37 нед гестации имеет место функциональное преобладание правых отделов сердца над левыми. Правые отделы сердца обеспечивают перфузию плаценты, левые — осуществляют церебральное кровоснабжение плода. Рост скоростных и объемных показателей кровотока по мере прогрессирования беременности происходит только до 37 нед, далее (38—40 нед) повышается активность левого желудочка сердца и снижается активность правого, что объясняется снижением венозного возврата крови, увеличением периферического сосуди-стого сопротивления.
По-видимому, играет роль начинающееся старение плаценты и связанное с ним снижение плацентарного кровотока.
Срок 37 нед гестации как бы свидетельствует о достаточной зрелости плода и является границей, когда прекращается нарастание объемных показателей сердца. Это подтверждает обоснованность критериев ВОЗ по сроку доношенной беременности (37—40 нед).
Следует подчеркнуть, что наиболее оксигенированная кровь из плаценты доставляется к головному мозгу плода, чему способствует наличие венозного и артериального протоков, а также овального окна (в перегородке между предсердиями).
Оксигенированная кровь от плаценты возвращается к плоду через вену пупови-ны.
Вена пуповины делится на две ветви: одна вена впадает в воротную вену печени, другая, называемая венозным протоком, впадает в нижнюю полую вену при входе ее в правое предсердие. Половина крови оттекает к воротной системе, половина — к венозному протоку. Этот проток представляет собой узкий сосуд; проходя по нему, кровоток развивает большую скорость.
Благодаря мембранозному клапану в правом предсердии (край овального окна) предотвращается смешивание хорошо оксигенированной крови из венозного протока с бедной кислородом кровью нижней полой вены.
Кровь из венозного протока переходит из правого предсердия через овальное окно в межпредсердной перегородке, в левое предсердие. Отсюда кровь течет через левый предсердно-желудочковый (митральный) клапан в левый желудочек и выбрасывается в аорту. Примерно 50 % крови направляется к голове и верхним конечностям. Оставшаяся часть проходит вниз по аорте.
Кровь из нижней и верхней полой вены направляется через правый предсердно-желудочковый (трехстворчатый) клапан в правый желудочек. Лишь небольшая часть крови из правого желудочка попадает в легкие, так как они не функционируют.
Основная часть направляется через узкий сосуд, называемый артериальным протоком, в нисходящую часть аорты ниже отхождения сосудов к голове и шее от дуги аорты.
При рождении прекращение пуповинного кровотока вызывает остановку кровотока в венозном протоке, падение давления в правом предсердии и закрытие овального окна. Вентиляция легких открывает легочный кровоток. Артериальный проток закрывается в результате повышения Р02. До рождения проток остается открытым благодаря уменьшению продукции ПГЕ2 и простациклина, которые действуют как местные вазодилататоры. Преждевременное закрытие артериального протока возможно при длительном применении ингибиторов циклооксигеназы и ?-адреноблокаторов.
6.3.2.2. Кровь плода
Большая часть гемоглобина у плода — это HbF (фетальный), в состав которого входят две гамма-цепи. Между 10-й и 28-й неделей беременности 90 % гемоглобина составляет HbF. С 28-й по 34-ю неделю происходит переход к НЬА. В срок родов величина соотношения HbF:HbA составляет 80:20.
Фетальный гемоглобин устойчив к денатурации кислотами и щелочами, сродство к кислороду у него выше, чем у НЬА. При рождении среднее содержание гемоглобина в капиллярной крови составляет 18 %. Более высокая концентрация гемоглобина у плода и большее сродство HbF к кислороду увеличивают поступление кислорода через плаценту и позволяет легче переносить гипоксию.
6.3.2.3. Дыхательная система плода
Дыхательные движения у плода появляются на 13-й неделе гестации (иногда с 11-й недели), при этом амниотическая жидкость поступает в легкие, что необходимо для их нормального развития.
Полная дифференцировка капиллярных и трубчатых структур легких плода происходит к 20-й неделе внутриутробного развития. Альвеолы развиваются после 22 нед. Нерегулярные дыхательные движения плода происходят внутриутробно и, по-видимому, необходимы для оптимизации гемодинамики плода. Альвеолы легких выстланы фосфолипидами, получившими название сурфактанта. За счет снижения поверхностного натяжения он предотвращает спадение мелких альвеол во время выдоха. Сурфактант непрерывно обновляется благодаря синтезу его компонентов альвеолоцитами II типа.
Основным фосфолипидом (80 % от общего количества) служит фосфатидилхолин (лецитин). Продукцию лецитина стимулируют кортизол. Уровень фосфатидилглицерола в околоплодных водах имеет большую прогностическую ценность в отношении развития респираторного дистресс-синдрома.
6.3.2.4. Иммунная система
Плоду необходима эффективная иммунная система для сопротивления внутриутробной и перинатальной инфекции. Лимфоциты появляются с 8 нед и к середине II триместра беременности все фагоцитирующие клетки, Т- и В-лимфоциты и комплемент имеются в количестве, достаточном для иммунного ответа. При врожденных токсоплазмозе, краснухе, инфекции, вызванной ЦМВ и ВПГ, поражается целый ряд систем.
Иммуноглобулины (IgG) в основном попадают из крови матери. В организме плода в норме образуется лишь небольшое количество IgM и IgA, которые не переходят через плаценту. Выявление их у новорожденного при отсутствии IgG указывает на острую внутриутробную инфекцию.
К общим иммунологическим защитным факторам относятся амниотическая жидкость (лизоцим, IgG), плацента (лимфоидные клетки, фагоциты, барьерная функция), нейтрофилы из печени и костного мозга и интерферон лимфоцитов.
6.3.2.5. Желудочно-кишечный тракт
На 13-й неделе гестации появляется отчетливая перистальтика кишечника. С 16 нед плод совершает глотательные движения. Глотательный рефлекс развивается постепенно. Плод непрерывно и с увеличивающейся частотой глотает околоплодные воды примерно до 20 мл/ч.
Толстая кишка к сроку родов заполнена меконием, но в норме он не проникает в околоплодные воды. Наличие мекония в околоплодных водах указывает на гипоксию плода.
По мере роста плода содержание воды в организме постепенно уменьшается, а запасы гликогена и жира увеличиваются примерно в 5 раз.
У недоношенных новорожденных жира фактически нет и значительно снижена способность переносить голодание. Это усугубляется неполным развитием пищеварительной системы, что может проявляться слабым и прерывистым сосанием, некоординированными глотательными движениями, замедленным опорожнением желудка и нарушением всасывания углеводов, жиров и других питательных веществ.
6.3.2.6. Почки и мочевые пути
После обратного развития мезонефроса, или вольфова протока, метанефрос формирует собирательную систему почки (мочеточник, лоханка, чашки и собирательные трубочки) и стимулирует развитие секреторной системы (клубочков, извитых канальцев, петель Генле). Развитие почки завершается к 36-й неделе, но созревание экскреторной и концентрационной способностей почек плода происходят постепенно. У недоношенных новорожденных почки незрелые, что может привести к нарушению баланса воды, глюкозы, натрия и КОС. Моча плода составляет основную часть амниотической жидкости, которая представляет собой бедный белком и глюкозой гипотонический клубочковый фильтрат. Скорость образования мочи постепенно увеличивается по мере созревания плода с 20—25 мл/ч в 32 нед до 30 мл/ч в 40 нед.
6.3.2.7. Двигательная активность плода
Шевеления плода впервые ощущаются матерью примерно в 18—22 нед при первой и несколькими неделями раньше при последующих беременностях.
Подсчет шевелений плода представляет собой важный метод наблюдения за его состоянием. Снижение активности плода может быть вызвано хронической внутриутробной гипоксией и ЗВУР, а может и предвещать смерть плода.
Ослабление шевелений плода — важный признак, по которому следует выявить беременных, нуждающихся в углубленном обследовании.
По мере созревания ЦНС у плода наблюдаются более сложные особенности поведения и хорошо выраженные поведенческие состояния, которые обозначают по шкале от IF до 4F. Состояние IF подобно медленному сну, когда отсутствуют движения глазных яблок и туловища. В состоянии 2F появляются периодические движения глаз и туловища (быстрый сон). Состояние 3F характеризуется движениями глазных яблок, генерализованными движениями туловища и конечностей, т. е. соответствует спокойному бодрствованию; 4F — это активная фаза с постоянными (непрерывными) движениями глаз и активностью плода. Основную часть времени (более 80 %) плод находится между циклами сна 1F и 2F.
Движения плода во II триместре беременности хаотичны и носят генерализованный характер. Наблюдаются отдельные движения рук, которые касаются лица, головы. Плод подносит большие пальцы рук ко рту и осуществляет слабые сосательные движения. Ноги согнуты в тазобедренных суставах и прижаты к туловищу. Большую часть времени плод располагается головой вверх, но часто поворачивается, потом вновь принимает тазовое предлежание. Характерны повороты вокруг своей оси, а также запрокидывание и сгибание головки. Усиление движений в этот срок гестации обусловлено созреванием вестибулярного аппарата у плода и обособлением двигательной зоны коры большого мозга.
6.3.2.8. Околоплодные воды
К 12 нед беременности амнион приходит в соприкосновение с внутренней поверхностью хориона и облитерирует экстраэмбриональный целом. Эти две оболочки слипаются, но никогда не сливаются в одну. Ни амнион, ни хорион не имеют сосудов и нервов, содержат значительное количество фосфолипидов, а также ферментов, необходимых для гидролиза фосфолипидов. Считается, что хориодецидуальная функция играет основную роль в развитии родов (в том числе преждевременных) посредством продукции простагландинов Е2 и F2a.
Амниотическая жидкость вначале секретируется амнионом, к 10-й неделе она представляет собой главным образом транссудат плазмы плода. С 16 нед внутриутробного развития кожа плода становится непроницаемой для воды и общее увеличение количества амниотической жидкости происходит за счет небольшого несоответствия между поступлением ее через почки и легкие и удалением за счет заглатывания плодом.
Объем амниотической жидкости прогрессивно увеличивается (в 10 нед — 30 мл, в 20 нед — 300 мл, в 30 нед — 600 мл, в 38 нед — 1000 мл, к 40 нед —1200 мл). При перенашивании ее объем быстро уменьшается (в 41 нед — 800 мл, в 42 нед — 500-350 мл).
Функции амниотической жидкости следующие:
• защита плода от механических повреждений;
• создание условий для движения плода и предупреждение контрактур конечно-стей;
• предупреждение сращений;
• создание условий для развития легких плода.
Снижение количества околоплодных вод во II триместре беременности приводит к гипоплазии легких. Основные изменения в объеме амниотической жидкости происходят при таких состояниях, как агенезия почек, поликистоз почек или ЗВУР (маловодие).
Многоводие возникает при воспалении амниона, анэнцефалии, атрезии пищевода и двенадцатиперстной кишки.
В 20 нед гестации длина плода составляет 25— 26 см, масса 380—400 г. Кожные покровы тонкие, полупрозрачные, через которые просвечивает сосудистая сеть, появляется сыровидная смазка, защищающая кожные покровы. Кожная смазка вырабатывается сальными железами плода.
С 20 нед гестации происходит дифференцировка нейробластов разных типов, которые отличаются друг от друга функциональными особенностями, имеют различную морфологическую структуру и биохимические особенности.
Основным механизмом дифференцировки является синтез специфических макромолекул, белков, гликопротеидов, ферментов, медиаторов, характерных только для этой специфической популяции клеток. Нейроны передают информацию другим нейронам. Тела нейронов мигрируют в верхние отделы полушарий, образуя слои
коры большого мозга. Дендриты, аксоны пронизывают белое вещество головного моз-га.
Остановимся несколько подробнее на одном из кардинальных событий II триместра беременности — развитии высших структур ЦНС (коры большого мозга) у плода.
6.3.3. Формирование мозга и нейроэндокринной системы в пре- и перина-тальном онтогенезе
6.3.3.1. Формирование ЦНС
Пренатальный онтогенез является одним из важнейших этапов внутриутробного развития плода человека.
Последовательная смена основных этапов формирования мозга во II триместре беременности обусловлена с одной стороны генетической программой плода, с другой — факторами внешней среды через организм матери. Именно в пренатальном онтогенезе происходит формирование основ индивидуальной вариабельности мозга ребенка [Саркисов С. А., 1980].
На ранних стадиях пренатального онтогенеза (5—6 нед) имеет место митоз нейронов в зоне мозговых пузырей и миграция нейронов к месту своей дальнейшей локализации. В 8 нед выявляется закладка новой коры [Боголепова И. Н., 1999]. В этом периоде стенка полушария большого мозга состоит из четырех основных слоев: матрикса, межуточного слоя, корковой закладки и мозгового слоя.
Для этого гестационного возраста характерно единообразие строения новой коры. Закладка ее представляет собой однородное образование без какого-либо деления на отдельные формации. Клетки этого периода однородные, округлые, интенсивно окрашенные.
С 16 нед развития плода происходит миграция клеток к месту новой коры, обособление основных корковых областей, начало цитоархитектонической дифференцировки корковых слоев. В этом периоде выделяются все основные области коры (прецентральная, постцентральная, височная, зрительная, лимбическая и др.). Их цитоархитектоническое строение отличается изменением ширины поперечника коры, плотностью расположения нейронов.
Важным признаком развития основных корковых областей является их гетерохрония, различия в типах дифференцировки слоев и созревания нервных элементов.
Впервые появляется прогрессивное разряжение глубокой части корковой пластинки с отчетливым делением на компактный, густоклеточный поверхностный этаж и более светлый нижний этаж, где клетки расположены более свободно.
Площадь лимбической области коры большого мозга плода в 16—18 нед составляет 83 мм и впервые подразделяется на передний и задний отделы. Напомним, что именно с 14—16 нед возникает вторая волна инвазии трофобласта в стенки спиральных артерий мышечных сегментов, благодаря которой резко возрастает кровоток и кровоснабжение плаценты и плода. Особенно усиливается кровоснабжение мозга плода.
К 22 нед гестации начинают прогрессировать процессы внутри коры, появляются цитоархитектонические слои, впервые определяются отдельные цитоархитектонические поля мозга.
От всей закладки новой коры отграничивается первоначально слой I. В нижнем этаже раньше всего обособляется слой V, несколько позднее — слой III и т. д.
Вырисовывается горизонтальная исчерченность, отграничивается двигательное поле. С 22 нед у плода, кроме общих генерализованных движений, появляются отдельные целенаправленные движения рук (сосет пальчик), касается уха и головы. Выделяются поля V, III, II, IV, VI.
По данным И. Н. Боголеповой, к 22-й неделе гестации площадь лимбической области мозга составляет 117 мм2, т. е. 4 % от площади той же коры взрослого человека. В период 22—28 нед внутриутробного развития мозга плода происходит яркая гетерохромность образования отдельных цитоархитектонических полей, свойственных человеку, что проявляется в темпах стратификации отдельных слоев, интенсивном увеличении ширины поперечника коры большого мозга.
К 27—28-й неделе в коре больших полушарий мозга плода человека выделены все основные цитоархитектонические поля. Начинается активный процесс клеточной дифференцировки. Увеличиваются в размерах клетки V слоя, приобретая форму, близкую к пирамидной. Слой I почти не содержит клеток, слой II — темный, компактный, состоит из плотно расположенных клеток, слой III — широкий со свободно расположенными и интенсивно окрашенными клетками, слой IV — клетки плотно расположены. Слой V представляет собой полоску просветления, клетки крупные. Четко выделятся слой IV.
Нейроны увеличиваются в размерах, становятся более разнообразными по форме. После 28 нед интенсивно увеличивается площадь поверхности коры.
Таким образом, во второй половине беременности (22—27 нед) у плода происхо-дит:
• четкая дифференцировка слоев коры большого мозга;
• послойное расположение корковых нейронов;
• морфологическое и функциональное созревание двигательной зоны и зоны вестибулярного аппарата.
Различия в строении мозга и его сосудистой системы у ребенка, родившегося на 28-й неделе и у ребенка, родившегося в 36 нед, во много раз больше, чем между мозгом 3-месячного ребенка и мозгом взрослого человека.
Основная гетерохромия развития цитоархитектонических полей коры большого мозга, стратификация (обособление), образование 6-слойной коры серого вещества свойственно только человеку.
В этом периоде имеет место интенсивное увеличение массы мозга. С 2 нед гестации вплоть до 37-й недели масса мозга увеличивается в 5 раз (!), поверхность коры теменной области — в 3 раза, затылочной области — в 6 раз.
Глия дифференцируется на астроциты и олигодендроциты. В мозговой ткани глия выполняет опорную, репаративную, трофическую, буферную и гемостатическую функции. Глиальные клетки стимулируют рост аксонов. Отдельные виды глиальных клеток выполняют специальные функции. Нейроны образуют множество контактов с капиллярами, которые транспортируют необходимые питательные вещества из крови в нейроны и продукты метаболизма из нейрона в кровь.
В периоды интенсивного построения неокортикальных структур интенсифицируется анаэробный гликолиз, образуются множественные контакты между нейронами, происходит их созревание, повышается функциональная активность мозга (можно регистрировать биопотенциалы мозга, характерные для сновидений). Предполагают, что плоду снятся сны. Может быть происходит считывание информации с генетического кода ДНК клетками мозга? Информация, несущая опыт предыдущих поколений и эволюции, позволяет ребенку легко обучаться. По образному выражению Л. О. Бадаляна, «новорожденный от рождения не способен ни к чему, кроме способности всему научиться».
В глубокой незрелости ЦНС плода заложена основа гибкого дифференцированного приспособления к изменяющимся условиям его роста. Никогда нельзя утверждать, что у больной матери родится только больной ребенок.
В процессе филогенеза подобная организация и строение коры большого мозга имеется только у человека, поэтому носит название новой коры.
Именно морфологическая зрелость коры больших полушарий большого мозга (неокортекс) лежит в основе диагностических критериев живо- и мертворождения, предложенных ВОЗ как необходимых для диагностики недоношенных новорожденных в 20—27 нед гестации.
Таблица 6.14. Критерии возрастного развития мозга плода (ВОЗ)

С 22 нед гестации пренатальный период развития беременности считается перинатальным.
В развитии мозга существуют определенные закономерности, которые ВОЗ предложила в качестве критериев возрастного развития плода (табл. 6.14) во II триместре (20—27 нед гестации).
Олигодендроциты регулируют ионное равновесие, участвуют в образовании микроканалов. Формируется гематоэнцефалический барьер.
С 24—27 нед гестационного возраста кора большого мозга плода осуществляет:
• интегративные функции регулирующих систем организма плода;
• адаптационно-компенсаторные реакции;
• динамическое взаимодействие корковых и корково-стволовых систем.
Мозг плода развивается интенсивно, но неравномерно. Скачок роста большого мозга наблюдается в 27—28 и 32—37 нед и сопровождается увеличением кровоснабжения пло-да.
Увеличивается ширина коры большого мозга и отдельных полей (в частности двигательного). Продолжаются активные процессы клеточной дифференцировки, миграции и пирамидизации. Базальные ветви передней и средней мозговых артерий имеют крупные диаметры.
Основными структурными компонентами нервной ткани являются нейроны и нейроглия. Нейроны осуществляют возбудимость и проводимость мозга, нейроглия выполняет защитную, трофическую и секреторную функции.
Нейроглия принимает участие в образовании гематоэнцефалического барьера (ГЭБ).
Формирование ГЭБ в онтогенезе происходит одновременно с формированием высших структур (новая кора).
ГЭБ — это специализированная система эндотелиальных клеток, которые расположены так плотно друг к другу, что защищают мозг от вредных веществ, циркулирующих в крови. С другой стороны, клетки ГЭБ обеспечивают доставку в мозг необходимых метаболитов и нутриентов. В отличие от других капилляров, которые свободно осуществляют обмен по обе стороны своей стенки, ГЭБ строго ограничивает транспорт в мозг многих веществ (селективный отбор).
Нарушение проницаемости ГЭБ является ключевым компонентом в ряде осложнений беременно-сти.
Следует подчеркнуть, что формирование неокортикальных структур, усложнение морфологической организации мозга сопровождается синтезом нейроспецифических белков. При нарушении проницаемости ГЭБ (гипоксия, воздействие инфекции) происходит проникновение нейроспецифических белков в интерстициальное пространство ткани головного мозга, распространение их с током спинномозговой жидкости и попадание в венозную кровь плаценты, а далее — в кровоток материнского организма.
Нейроспецифические белки являются сильными иммуногенами, способными вызвать продукцию противомозговых аутоантител и образование ЦИК. Не с этим ли механизмом связан процесс острого иммунного воспаления эндотелия (эндотелиоз), который лежит в основе возникновения позднего гестоза? Самый ранний срок его начала совпадает с развитием ЦНС плода.
Механизм нарушения проницаемости ГЭБ следующий.
1. Повреждение мембранных структур астроцитов (нейронов) и эндотелиоцитов в результате инфекций, интоксикации, ацидоза, метаболических расстройств, асфиксии.
2. Нарушение плотности контактов между эндотелиальными клетками, отек и набухание нейронов как следствие изменения ауторегуляции мозгового кровотока (мгновенная артериальная гипертензия, кратковременная ишемия, повышение гидродинамического давления в расширенных церебральных сосудах).
3. Открытие ГЭБ за счет метаболических нарушений у плода: повышение содержания в крови лактат-ацидоза, глутаматкальциевая токсичность, выброс кининов, образование вторичных продуктов при повышенном ПОЛ.
Еще в 1935 г. Л. С. Штерн рассматривала эклампсию как результат нарушения ГЭБ плода.
Организм матери не обладает какой-либо иммунологической толерантностью к белкам мозговой ткани. Поэтому «прорыв» плацентарного барьера и проникновение нейроспецифических белков мозга плода в кровь матери вызывает образование ИК.
Иммунные комплексы проникают в печень матери, где разрушаются и элиминируются. Но не бесконечно. В связи с тем что «закрыть» участки повышенной проницаемости плаценты невозможно, то нейроспецифические белки продолжают поступать в материнский кровоток, накапливаясь в субэндотелиальном сосудистом слое плаценты, спиральных сосудов матки, сосудах почек, печени, легких и др. При длительно текущем, рано начавшемся гестозе его течение отличается особой тяжестью.
В механизме нарушения барьерной функции ГЭБ ключевым моментом является активация мощных медиаторов сосудистой проницаемости — кининов, которые повышают процесс аутосенсибилизации к нейроспецифическим белкам плода.
Повышают проницаемость ГЭБ некоторые лекарственные средства: папаверин, но-шпа, которые, по-видимому, нельзя применять при гестозе, ФПН, гипертонической болезни.
Для снижения силы иммунологической реакции целесообразны глюкокортикостероидные гормоны, антиоксидантные и мембранстабилизирующие лекарственные средства, а также (3-ад-реноблокаторы.
Таким образом, основными ведущими факторами в образовании иммунокомплексной патологии (гестоз) являются: гипоксия плода и плацентарная недостаточность.
Пролонгировать беременность у женщин с длительно текущим и рано начавшимся гестозом рискованно, так как иммунокомплексное воздействие на сосудистую стенку матери усугубляет развитие полиорганной недостаточности. Нарушается проницаемость ГЭБ не только у плода, но и у матери, что может привести к глубоким гипоксическим и метаболическим сдвигам, вызывающим эклампсию (снижение мозгового кровотока, отек мозга, потеря сознания, судороги).
По-видимому, гипоксия мозга плода и проницаемость ГЭБ являются пусковым механизмом в цепи сложных процессов, которые продолжаются даже в условиях прекратившейся гипоксии. У плода могут задерживаться дифференцировка нейробластов, частичная деструкция матрикса, гибель и склероз части нейронов.
Сущность многосторонних изменений при гестозе заключается в поражении сосудистой системы плаценты, повышении ее проницаемости (плацентарная недостаточность). При нормальном развитии беременности сосудистая система плаценты является первой линией защиты против проникновения антигенов плода в материнский кровоток.
К 27 нед гестации внутриутробный плод сформирован полностью. Закончена даже половая дифференцировка мозга. Структуры нейроэндокринной системы плода такие же, как у взрослого человека. "Чертеж" человеческого организма закончен. Далее происходит только увеличение размеров клеток и рост органов и тканей.
С этого времени взаимоотношения эндокринных органов осуществляются через ЦНС, совершенствуются механизмы регуляции и интеграции нейроэндокринной системы.
В 24 нед длина плода составляет 30 см, масса тела — 600—800 г. Если произойдут сверхранние преждевременные роды, то плод может родиться не только живым, но существовать вне организма матери (конечно, при соблюдении температурного режима, особенностей питания, приближенных к условиям матки). Глубоконедоношенный новорожденный может совершать дыхательные движения, которые без поддержки ИВЛ быстро истощаются.
Согласно приказу МЗ РФ «О переходе на рекомендованные ВОЗ критерии живорождения и мертворождения» (1992), все новорожденные, родившиеся с массой тела от 500 до 999 г, если они прожили более 168 ч (7 сут) после рождения, так же как и дети с большей массой тела регистрируются в ЗАГСе.
Напомним, что масса плода 500 г соответствует 22 нед гестационного возраста.
Выживаемость новорожденных в сроки беременности до 24 нед низкая. Так, в мире нет ни одного сообщения и благоприятном исходе для плода, родившегося в 22 нед. В 23 нед гестации выживают только 10 % новорожденных, но уже в 24 нед — 60 %, а в 27 - 80—90 % (конечно, при соблюдении необходимых режимов выхаживания).
До 22 нед преждевременно родившиеся плоды не выживают из-за отсутствия новой коры и глубокой незрелости органов и систем.
6.3.3.2. Надпочечники плода
Корковое вещество надпочечников плода развивается из мезодермальной ткани, а мозговое вещество из ткани нервной трубки (нервного гребешка). В процессе эмбрионального развития они сливаются. С 8 нед беременности корковое вещество надпочечников дифференцируется и постепенно увеличивается в размерах. К 20—22 нед гестации корковое вещество надпочечников становится размером с почку. Это фетальная зона, содержащая стрессовые гормоны, которые необходимы плоду для осуществления приспособительных и защитных реакций и для процесса рождения. В фетальной зоне коркового вещества синтезируется значительное количество ДГЭА и ДГЭА-сульфата, которые являются предшественниками эстрогенов, вырабатываемых плацентой. В процессе родов и в первые месяцы после рождения фетальная зона подвергается регрессии и в ней образуются три зоны коркового вещества надпочечников — клубочковая, пучковая и сетчатая. В клубочковой зоне синтезируется альдостерон, в пучковой и сетчатой — кортизол и андрогены. Кортизол поддерживает уровень глюкозы у плода, альдостерон сохраняет ОЦК за счет обеспечения задержки натрия, регуляции ренин-ангиотензиновой системы плода.
6.3.3.3. Щитовидная железа
Щитовидная железа, как и все другие эндокринные органы плода, закладывается в 4—5 нед беременности, постепенно накапливая йод и синтезирует йодтиронины. К 18-недельному сроку щитовидная железа полностью дифференцирована и активно функционирует. В околоплодных водах определяется тироксин. Для развития и функционирования щитовидной железы плода необходима материнская стимуляция тиреолиберином в достаточном количестве.
Снижение или слишком сильная стимуляция щитовидной железы может привести к усилению, а далее ослаблению ее функции. Это нарушает развитие мозга плода (уменьшение массы головного мозга), вызывает образование зоба, приводит к различным нарушениям со стороны нейропсихической сферы в постнатальном развитии (косоглазие, снижение памяти, трудности обучения, концептуального и числового мышления).
При снижении поступления йода во время беременности (регионы проживания с дефицитом йода, гипотиреоз) необходимо применение препаратов йода (рекомендации эндокринолога).
6.3.3.4. Становление нейроэндокринной системы
Гипоталамус и гипофиз, хотя функционируют как единая интегрированная система с момента своего образования и до конца жизни, имеют различное эмбриональное происхождение. Закладывается гипоталамус и гипофиз одновременно на 5-й неделе гестации.
Передняя доля гипофиза (аденогипофиз) развивается из кармана Ратке непосредственно под гипоталамусом.
Задняя доля гипофиза в действительности является продолжением гипоталамуса и имеет исключительно невральное происхождение. Расположены гипоталамус и гипофиз снаружи от ГЭБ, который полностью формируется к 22 нед беременности. В гипоталамо-гипофизарной системе осуществляется интеграция нервной и эндокринной функций.
В среднефетальном периоде усложняется строение сосудов мозга. К 20—21 нед развития сформирована сосудистая система головного мозга, полностью обеспечивающая потребности его интенсивного развития.
Гипоталамус секретирует рилизинг-гормоны. В гипофизе высвобождаются гонадотропины: статины и либерины. Мозговые структуры продуцируют нейротрансмиттеры (дофамин, серотонин) и нейропептиды.
Содержание ФСГ в крови плода мужского и женского пола различно. Уровень ФСГ в 3 раза выше у плодов женского пола. В ответ на продукцию гонадотропных гормонов яичника происходят процессы образования фолликулов.
Тестостерон, продуцируемый яичком плода, определяет формирование мужской дифференцировки гипоталамо-гипофизарной области мозга. Нарушение гормонального равновесия между эстрогенами и андрогенами может привести ко многим патологическим состояниям, которые клинически проявятся через 20—30 лет жизни.
В раннем и среднефетальном периодах у плода мужского пола интенсифицируется продукция тестостерона. Андрогены необходимы для преобразования полового центра гипоталамуса в мужской, который с этого времени осуществляет только тонический тип секреции гонадотропинов. Из тестостерона частично образуется эстрадиол (Э2). При нормальном развитии плода развивается специфический механизм защиты от избыточного содержания Э2. АФП также частично связывает Э2, препятствуя его избыточному накоплению.
Недостаточная продукция фетального тестостерона и дегидротестостерона может привести к крипторхизму (неопущению яичка), снижению чувствительности к андрогенам, риску развития опухолей яичка, гипоспадии, мужскому псевдогермафродитизму.
Мужской псевдогермафродитизм — это состояние, когда имеются яички, но фенотип наружных и/или внутренних половых органов — женский. Это патология редкая, ее причины крайне разнообразны:
• синдром нечувствительности к андрогенам;
• недостаточность 5а-редуктазы, трансформирующей тестостерон в дегидротестосте-рон;
• врожденная липоидная гиперплазия надпочечников;
• мутация гена ФДМП.
Новорожденного идентифицируют как девочку, потому что наружные гениталии сформированы по женскому типу. Но в пубертатном возрасте диагностируют первичную аменорею. При обследовании выявляют короткое влагалище, отсутствие матки и яичников. Полная нечувствительность к андрогенам составляет около 10 % от всех случаев первичной аменореи. Нечувствительность к андрогенам — это результат мутации генов, кодирующих эти рецепторы.
В головном мозге формируются множественные межнейронные связи (20—23 нед). Запись биоэлектрической активности мозга фиксирует циклы сна и бодрствования.
Развитие нервной системы происходит в течение всего внутриутробного периода с 3-й недели беременности вплоть до ее окончания, а также продолжается после рождения еще 2 года. Для развития головного мозга необходимо нормальное функционирование щитовидной железы. Способность воспринимать звуки и свет, реагировать на них появляется у плода в 24 нед гестации.
В генетической программе внутриутробного развития предусмотрено последовательное переключение и депрессия тех или иных генов, контролирующих смену периодов развития плода, чередование фаз дифференцировки и пролиферации клеток, сохранение запрограммированного числа клеток в каждом органе, в том числе в головном мозге плода. Воздействие повреждающих факторов (гипоксия, инфекция, токсические радикалы) могут задерживать процессы переключения генов, что может привести к гипоплазии отдельных органов и физиологических систем. Могут сохраниться клетки эмбрионального типа (гетерохромная дисплазия мозга, почек, гонад).
Плод реагирует на недостаточность содержания того или иного гормона матери. При сахарном диабете у матери поджелудочная железа плода усиленно продуцирует инсулин, тем самым провоцируя ее преждевременную гиперсекрецию, которая через несколько лет (или даже месяцев) перейдет в гипофункцию. То же происходит и при гипофункции щитовидной железы. Интенсивная продукция ТТГ у плода временно компенсирует гипотиреоз матери, но затем происходит срыв механизмов секреции этих гормонов, что особенно опасно из-за повреждающего влияния на клетки мозга. В этих случаях нередко плод предпочитает родиться преждевременно.
6.3.4. Развитие плаценты
Во II триместре беременности (13—20 нед) продолжает увеличиваться масса плаценты за счет роста новых ворсин. Еженедельно масса плаценты возрастает на 10 г. Начинают образовываться дольки — котиледоны. В 16 нед гестации масса плаценты и плода выравниваются, далее масса плода начинает обгонять массу плаценты.
С ростом плода требуется большее количество крови в межворсинчатом пространстве, поэтому в плаценте увеличивается количество капилляров, а в каждой ворсине капилляр приближается от центра к периферии для лучшего обмена с кровью матери.
Капилляры ворсин пульсируют ритмично, ворсины то удлиняются, то укорачиваются. Объем крови в межворсинчатом пространстве составляет 300—350 мл. Но с ростом плода крови плаценте нужно еще больше и тогда возникает феномен гестационной перестройки маточно-плацентарных сосудов, обеспечивающий 12-кратное увеличение объема МПК.
Сущность гестационной перестройки спиральных артерий субплацентарной зоны матки под воздействием клеток трофобласта заключается в исчезновении мышечных клеток из сосудистых стенок. Из узких извитых сосудов они превращаются в широкие сосуды с податливой стенкой.
Напомним, что в результате первой волны инвазии трофобласта (первые 12 нед беременности) децидуальные сегменты спиральных артерий замещаются прорастающим в них трофобластом и формирующимся фибриноидом. К концу I триместра беременности клетки трофобласта, занимающие просвет спиральных артерий, покидают его, что сопровождается значительным притоком крови к межворсинчатому пространству.
При второй волне инвазии трофобласта (14— 20 нед) последний внедряется в стенки артериальных сосудов, расположенных в миометральном сегменте. Процесс гестационной перестройки сосудистой системы матки сопровождается интенсивной продукцией простагландинов класса Е2, снижением общего сосудистого сопротивления и соответственно снижением системного артериального давления у матери (в среднем на 10—12 мм рт. ст.).
Трансформированные спиральные сосуды обеспечивают улучшение перфузии плаценты и, поскольку они лишены гладкомышечных клеток, то становятся неспособными реагировать на действие сосудосуживающих факторов. Весь процесс гестационной сосудистой перестройки спиральных артерий матки завершается к концу 20-й недели беременности.
С 20 нед начинается активный рост незрелых промежуточных ворсин и смена типа стромы на более плотную. Недостаточность второй волны инвазии цитотрофобласта нарушает процесс дальнейшего формирования ворсин плаценты. Развивается вариант хаотичных и склерозированных ворсин, ветвление мелких ворсин принимает беспорядочный характер, снижается образование новых капилляров, в ткани плаценты преобладает стромальный компонент при отсутствии сосудистого и эпителиального покрова ворсин. Все это повышает патологическую проницаемость плацентарного барьера.
Плаценту считают внезародышевым органом плода, хотя в ее состав входят кровеносные русла как плода, так и матери, тесно прилегающие одно к другому. Из всех органов плода плацента кровоснабжается наиболее интенсивно (40 % от сердечного выброса плода). К концу беременности она конкурирует с плодом за питательные вещества, потребляя большую часть глюкозы и кислорода, доставляемых в матку. Функциональная единица плаценты — котиледон. В зрелой плаценте их насчитывается около 120, они группируются в видимые невооруженным глазом дольки. Каждый котиледон представляет собой стволовую ворсину, отходящую от хориальной пластинки и делящуюся на многочисленные ветви. Стволовые ворсины, разделяясь, образуют ворсины второго и третьего порядка, которые в свою очередь дают начало терминальным ворсинам, непосредственно участвующим в обмене веществ между матерью и плодом. Котиледоны формируются вокруг спиральных артерий, вступающих в децидуальную оболочку матки. Центр каждого котиледона содержит полость, куда поступает кровь из спиральной артерии. Вначале кровь движется вертикально к поверхности хориальной пластинки, затем распространяется в латеральном направлении, проникая между терминальными ворсинами (на этом этапе происходит обмен веществ между материнской и плодовой кровью).
При этом кровь обедняется кислородом и питательными веществами, насыщается углекислым газом и продуктами жизнедеятельности плода. Затем кровь попадает в узкие венозные каналы между котиледонами, по которым движется обратно к децидуальной оболочке, где попадает в маточные вены и возвращается в материнский кровоток. Таким образом, материнский и плодовый кровоток разделены тремя слоями ткани: клетками трофобласта, соединительной тканью ворсины и эндотелиальными клетками капилляров плода. Однако при ультрамикроскопическом исследовании терминальных ворсин, расположенных внутри котиледона, выявляются многочисленные участки, в которых клетки эндотелия и трофобласта сливаются, образуя тончайшую сосудисто-синцитиальную мембрану, через которую в основном и происходит диффузия газов и питательных веществ.
Приток материнской крови к плаценте увеличивается в течение беременности с 50 мл/мин в I триместре до 600 мл/мин к моменту родов.
6.3.4.1. Нарушение плацентации
Известно, что нарушение первой волны инвазии трофобласта в стенку децидуальных артерий приводит к первичной плацентарной недостаточности, снижению кровоснабжения плаценты и плода. Это чаще всего приводит к самопроизвольному выкидышу в I триместре.
Нарушение второй волны инвазии трофобласта в стенки миометральных спиральных артерий также сопровождается снижением перфузии плаценты.
Допплерометрическое исследование МПК позволяет определить снижение артериального притока крови и в ряде случаев затруднение венозного оттока в 21—24 нед беременности, что является прямым следствием недостаточности второй волны инвазии трофобласта. Именно эти пациентки должны быть отнесены в группу риска по развитию плацентарной недостаточности, ЗВУР плода и позднему гестозу.
Причинами нарушения инвазии трофобласта во II триместре беременности могут быть заболевания матери (артериальная гипертензия, болезни соединительной ткани, сахарный диабет, АФС, инфекции (гестационный или хронический пиелонефрит), нейроэндокринно-обменные нарушения (гипоталамический синдром, ожирение).
Все эти заболевания приводят к формированию небольшой плаценты или тонкой распластанной плаценты. В таких клинических наблюдениях нередко выявляются кровоизлияния (инфаркты), базальные гематомы или участки ишемического некроза котиледона (следствие тромбоза сосуда).
Клинические признаки нарушения плацентации следующие:
• плацентарная недостаточность;
• поздний выкидыш;
• гестоз;
• ЗВУР плода.
Строение плаценты в эти сроки характеризуется усложнением ворсинчатого дерева, дифференцировкой ворсин на три типа:
• опорные ворсины;
• промежуточные незрелые ворсины;
• промежуточные зрелые ворсины.
В начале II триместра беременности доминируют промежуточные незрелые ворсины. Промежуточные дифференцированные только появляются и составляют не более 10—15 % от массы ворсин. К 24—27 нед беременности преобладают промежуточные зрелые (дифференцированные) ворсины и 5—10 % терминальных (окончательных) ворсин. Возрастает диффузная способность плаценты, что также способствует росту плода. Плацента обеспечивает трансплацентарный переход от матери к плоду иммуноглобулинов класса G, которые защищают плод от воздействия инфекционного агента. Когда у матери количество IgG снижено (хроническая инфекция, наличие длительно текущего заболевания, стресс), риск инфицирования плода возрастает, в связи с чем необходимо внутривенное введение беременной женщине иммуноглобулина. При острой инфекции, с которой мать столкнулась впервые, секретируются IgM.
Вторая волна инвазии цитотрофобласта, пик которой приходится на 22—24 нед гестационного возраста, совпадает с необходимостью усиления кровоснабжения мозга плода, так как в это время завершается структурное построение высших отделов ЦНС.
Плацента во время беременности продуцирует гормоны, сходные по структуре и действию со следующими гормонами и биологически активными веществами:
• гипоталамическими гормонами:
— гонадотропин-рилизинг гормон,
— кортикотропин-рилизинг гормон,
— тиреотропин-рилизинг гормон,
— сомастатин;
• гипофизарно-подобными гормонами:
— ХГ,
— ПЛ,
— хорионический кортикотропин,
— адренокортикотропный гормон;
• факторами роста:
— ИПФР (инсулиноподобный фактор роста),
— ЭФР (эпидермальный фактор роста),
— ФРФ (фактор роста фибробластов),
— ТФР (трансформирующий фактор роста),
— ингибин,
— активин;
• цитокинами:
— ИЛ-1,
— ИЛ-6,
— колониестимулирующий фактор;
• белковыми гормонами, продуцируемыми в организме матери:
— пролактин,
— релаксин,
— протеинсвязывающий инсулиноподобный фактор роста,
— ИЛ,
— колониестимулирующий фактор,
— прогестерон-ассоциированный эндометриальный протеин;
• белками, специфичными для беременности:
— ?1гликопротеид,
— РАРР-А.
Гормоны, выделяемые плацентой, необходимы для роста плода. Они оказывают влияние на интенсивность обмена веществ, рост тканей, созревание отдельных органов. Инсулиноподобные факторы роста координируют последовательное ускорение роста плода в III триместре беременности. Если плод в 28 нед гестации имеет массу тела 1100 г, то далее происходит линейное увеличение массы тела каждые 6 нед. Так, в 34 нед его масса составляет 2200 г, в 40 нед — 3300 г.
Гиперинсулинемия у плода, которая возникает в связи с сахарным диабетом у матери, ведет к макросомии, за счет избыточного отложения жира. При ЗВУР уровень инсулина у плода низкий, что замедляет еще больше его рост.
Дефицит тиреоидных гормонов задерживает созревание скелета и головного мозга, нарушает образование сурфактанта в легких плода.
Кортизол необходим для увеличения эластичности легких и высвобождения сурфактанта, обеспечивающих возможность самостоятельного дыхания при рождении.
В печени плода кортизол стимулирует образование (J-адренорецепторов и отложение гликогена, который необходим плоду для высвобождения глюкозы и обеспечения энергией в процессе родов и в первые часы после рождения.
В кишечнике кортизол стимулирует пролиферацию ворсин, синтез пищеварительных ферментов, которые необходимы для новорожденного при переходе на энтеральное пита-ние.
6.3.5. Осложнения II триместра беременности
Наиболее частыми осложнениями II триместра беременности являются:
• преждевременное прерывание беременности (поздний самопроизвольный аборт, преждевременные роды);
• истмико-цервикальная недостаточность;
• плацентарная недостаточность;
• антифосфолипидный синдром;
• внутриутробное инфицирование плода.
К осложнениям II и III триместров относятся:
• гестоз;
• анемия беременных;
• гестационный диабет;
• гестационный пиелонефрит;
• аортокавальная компрессия.
Отдельные осложнения будут более подробно изложены в специальных главах. Здесь же кратко остановимся на некоторых из них.
6.3.5.1. Поздний самопроизвольный аборт во II триместре
Поздний самопроизвольный аборт (13—21 нед) относится к распространенной патологии. Существует много причин, приводящих к самопроизвольному аборту во II триместре. Ряд из них (хромосомные аномалии) не подлежит коррекции и при их выявлении целесообразно произвести искусственный аборт. Ряд других причин (истмико-цервикальная недостаточность, плацентарная недостаточность) требуют корригирующего лечения.
Прерывание беременности в 22 нед и позже относится к преждевременным родам. После 22 нед новорожденный потенциально жизнеспособен.
Угрожающий аборт сопровождается повышением тонуса, периодическими сокращениями матки, укорочением шейки матки и приоткрытием шеечного канала (внутреннего зева шейки матки).
Причины самопроизвольного аборта:
1) хромосомные аномалии плода;
2) воздействие неблагоприятных внешних факторов (курение, злоупотребление алкоголем, токсикомания);
3) истмико-цервикальная недостаточность;
4) гормональные нарушения (гиперандрогения);
5) инфекции половых путей и ВУИ плода и др.
Дальнейшему нормальному развитию беременности могут препятствовать пороки развития матки (двурогая, седловидная), наличие миоматозных узлов больших размеров с центрипетальным ростом и подслизистой локализацией, а также низкое расположение межмышечного миоматозного узла (в области перешейка матки). Имеет значение перерастяжение матки при многоплодии или остром многоводии. Обсуждаются вопросы роли аутоантител (антифосфолипидных, анти-кардиолипиновых) в патогенезе позднего аборта.
Остановимся на пороках развития плода.
Хромосомные аномалии плода:
^ Патология аутосомных хромосом:
• трисомия по 21-й хромосоме (синдром Дауна);
• трисомия по 18-й хромосоме (синдром Эдвардса, который заключается в единственной пупочной артерии, сгибательной деформации пальцев рук, перекрещивании указательного пальца и мизинца, укорочении I пальца стопы). До 1 года доживают менее 10 % таких новорожденных;
• трисомия по 13-й хромосоме (синдром Патау: расщелины губы и неба, аномалии глаз, полидактилия. До 3-летнего возраста доживают менее 3 % новорожденных);
• синдром делеции короткого плеча хромосомы 5 (синдром кошачьего крика, умственная отсталость, лунообразное лицо).
^ Патология половых хромосом:
• синдром Клайнфелтера (набор хромосом 47XXY). Фенотип мужской, но распределение подкожной жировой клетчатки и развитие молочных желез по женскому типу. Отсутствие оволосения на лице. Бесплодие;
• синдром Тернера (набор хромосом 45X0). Маленький рост, крыловидные кожные складки на шее, аменорея, аномалии почек, пороки развития сердечно-сосудистой системы (коарктация аорты). Бесплодие;
• набор хромосом 47XYY. Высокий рост. Мужской генотип и фенотип, интеллектуальные нарушения. Плохо обучаемы. Бесплодны.
Дети с синдромом Дауна чаще рождаются у женщин позднего возраста (40 лет и старше). Тройной скрининговый тест позволяет выявить до 80 % случаев этого синдрома еще внутриутробно, до рождения. Ложноположительные результаты отмечают не более чем в 5 % случаев. Исследуют концентрацию АФП (частота выявления 20—25 %), концентрацию ХГ в сыворотке крови и используют УЗИ (чувствительно